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The "permanent" method for nonorthogonal VB calculations is extensively developed, 
and the so-called "subgraph-driven" procedure is proposed. To achieve high efficiency, the 
summation of a huge number of permanents is treated as a whole system, and the intermediate 
quantities, the "contracted-cofactors" of various orders, are introduced for the systematic 
summation. These intermediate quantities can be characterized by pairing graphs of 2n ele- 
ments (n = 1, 2 . . . .  ½ N - 2). Some test calculations for systems of up to 20 electrons are per- 
formed. The practice shows that this method is highly efficient, and the CPU time increases in a 
quite moderate way with the increasing number of electrons. 

1. I n t r o d u c t i o n  

Recent ly  there has been a considerable increase of  interest in the valence bond  
me thod  [1 ]. A significant role in the resurgence of  VB theory is p layed by nonor tho-  
gonal valence bond  calculation of  electronic structures [2-5]. To  get a meaningful  
VB description of  electronic structures of  many  electron systems, the use of  over- 
lap-enhanced (usually energy-optimized) AO-like orbitals are necessary [2-7]. A 
number  of  successful nonor thogonal  VB calculations have been repor ted recently 
[2,5,7]. As the VB theory is very closely related to the well established concepts  of  
chemistry such as valence [8], hybridizat ion and resonance [9], it is likely that  non- 
or thogonal  VB calculation will provide some "simple pat terns o f  unders tanding"  
of  chemical phenomena  at a basic level. However ,  the nonor thogonal  difficulty 
remains the major  obstacle of  such kind of  VB calculation. Therefore there is a 
strong need for a much more  powerful  algori thm for nonor thogonal  VB calcula- 
tion. The Slater-determinant  me thod  is p robab ly  the most  efficient me thod  which 
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is currently used by a number of  authors such as Cooper, Gerratt and Raimondi 
[2-4] and van Lenthe's group [5,10], and the cofactor method of L6wdin [11] is used 
to deal with determinants of nonorthogonal orbitals. The difficulty of this method 
lies in the exponential length of Slater-determinant expansion of a VB function 
and the evaluation of cofactors. Some sophisticated computational techniques 
have been developed by a number of authors [3,4,10] to reduce the computational 
effort, and two practical VB programs based on the spin-coupled valence bond 
(SCVB) method [3] and self-consistent-field valence bond (SCFVB) method [12], 
respectively, are well developed and have been applied to a wide range of chemical 
systems [2-5]. Another mathematically beautiful method for VB calculation is the 
group theoretical approach as used recently by McWeeny [13], and Zhang and Li 
[14]. In this approach, the spin-free form of VB wave functions is used. Generally, 
the wave function can be expressed as a linear combination of VB functions of sev- 
eral resonance structures, and we can evaluate the VB matrix elements by the fol- 
lowing expressions: 

(~BI¢~B)---- ~ Dl~ll(P)(f~lelf~'), (la) 
PES~r 

(~vBIHl~b~rB) = ~ DI~](P)(f~IPHlf~'). (lb) 
PESr¢ 

Here f~(f2 ~) is a product o f N  orbitals, and DI~ l (P) are matrix elements of the irredu- 
cible representation [£] --- [2½ N-s, 1:s]. In this paper we follow the convention that 
the permutations are defined to act on the indexes of the orbitals in the bra, i.e. 

(f21e = (~bl(1)~bz(2)... q~N(N)IP 

= (~bp, (1)q~p2(2)... ~bpN(N) 1 , (2) 

where 

P = . (3) 
Pl p2 . . .  PN 

As both expressions involve the summation over N! permutations, a direct applica- 
tion of this formalism is impracticable. Although this method is believed to be less 
effective than the Slater-determinant method, we have a strong feeling that it seems 
more reasonable to seek a powerful algorithm in the group theoretical approach 
[1 5], because the VB wave function is very closely related to the symmetric group 
SN, and the N! problem results from the N! permutations involved in the antisym- 
metrizer. We note the fact that both (f~lPIf~/) and (f~lPHIf~ ~) can be expressed as a 
product of several factors, for example, (f~lPIf~') is a product of N factors. There- 
fore as the permutation goes smoothly, i.e. form one permutation to another, only 
a small part of the elements change their positions, only part of the factors change 
from term to term; thus the key to the efficiency of calculation is to avoid repeated 
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computations by using this fact. In our previous paper [15] we represented a primi- 
tive formalism for such a purpose based on left-coset decomposition of the sym- 
metric group. It was found that the summation over each left coset turns into a 
"permanent"  of order N / 2 .  It is much more efficient to sum up permanents than to 
sum N! terms separately. Moreover, each left-coset can be characterized by a pair- 
ing pattern of N elements, thus as the pairing pattern changes smoothly, the corre- 
sponding matrix of the permanent will also change smoothly in a parallel way. 
That means, some kind of intermediate quantities appear frequently in the whole 
computation. Therefore it should be possible to achieve even higher computational 
efficiency by using such a fact. The questions are: (a) what is the proper way for 
the systematic summation of a huge number of permanents; and (b) what kind of 
intermediate quantities should be used. In this paper, the "subgraph-driven" 
method is proposed for the systematic summation, and the "contracted cofactors" 
of various orders are introduced as the frequently re-used intermediate quantities. 
Each contracted cofactor is a sum of a set of subpermanents multiplied by proper 
group theoretical factors. The contracted cofactors of order n can be characterized 
by subgraphs of pairing patterns of 2n elements, and the higher order contracted 
cofactors can be evaluated form the lower ones, therefore the sum of a large number 
of permanents can be finally obtained by a recurrence procedure. Similar recur- 
rence relations were introduced by Gerratt [16] and used by Pyper and Gerratt [17]. 
A new VB program using the subgraph-driven procedure has been developed. A 
universal file, which depends only on the irreducible representation of the sym- 
metric group SN, is used in the program. This file represents the knowledge of the 
unique subgraphs and the group theoretical factors. The practice shows that the 
new algorithm is much more powerful than the simple "permanent" method. 

2. " P e r m a n e n t "  method 

The permanent method, which was referred to as the "positive determinant" 
method in ref. [15], is the starting point of this work. For the sake of convenience, 
the basic formulas of this method will be briefly represented here, and we restrict 
our consideration to the case of spin = 0. The spin-free form of VB wave functions 
of N electrons can be expressed as following: 

~VB =@1 lf~ , (4) 

where 
I 

@11 = ( f ~  DI~I](P)P (5) 
tN l !  /~  
\ " 1  PESN 

and 

[2 ----- ~bl (1)q~2(2)... ~bN(N), (6) 
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where flpi(i ----- 1, 2, . . . ,  N) are one-electron orbitals, which can be expanded as a 
linear combination of atomic orbitals. By choosing different products, say 
f~'(= I~ ~b~), we can obtain VB wave functions corresponding to different VB struc- 
tures. This form of VB wave functions leads to eqs. (la) and (lb) for overlap and 
Hamiltonian matrix elements, respectively. A better way to evaluate overlap and 
Hamiltonian matrix elements is to classify the permutations of SN into a number of 
subsets according to the left-coset decomposition of the group AN: 

SN = U q i a ,  (7) 
i 

where Q is a properly defined subgroup of SN with 2~N(1N)! permutations [18], 
and qi are the left-coset generators (representatives). An important property of the 
left coset is that all permutations belonging to the same left coset have the same 
Dll-Value. Thus we obtain the new expressions ofeqs. (1 a) and (lb) as 

(~VBI~b~rB) = ZDIAll(qi) Z (f~lq;Ojlf~'), (8a) 
i Q)EQ 

D[A](qi) ~ <f~lqiOjnlS2'>. (8b) <V~vBIHI~b~B) = ~ 11 
i QjEQ 

It is shown that the second factor in eq. (8a) corresponds to a permanent of order 
N/2, or a few permanents for eq. (8b). The permanent of an n × n matrix A = (ao., 
1 <~ i < j <~ n), writtenper(A), is defined by [19] 

n 

per(A) : Z H aipi . (9) 
PESn i = l  

As shown in a previous paper [15], there is a one to one correspondence between 
the left cosets and the pairing patterns of N elements 1, 2, . . . ,  N. If we have a coset 
with a representative qi as following: 

( 1  2 3 4 . . .  N - I  N )  
qi = (10) 

al a2 bl b2 . . .  dl d2 ' 

then this coset can be characterized by the following pairing pattern: (al a2), 
(bl b2), . . . ,  (dl d2). It is known that all the permutations of the coset have the 
same pairing pattern. 

Now let us consider the expressions for overlap and Hamiltonian matrix 
elements. 

Overlap matrix element (~VBI~,B) 
For each pairing pattern(graph) G~v we can construct a matrix M(G~) in the 

following way: 
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as a2) 
(bs b2) 

, • .  

G ~ =  (Ca c~)'  ~t(G~)  = 

• . . 

(d~ d2) 

"As A2 .. .  Aq- 

BI B2 . . .  B~ 
"1" 

Ca c 2 . . . c ~  

DI D2 . . .  DN -,£_ 

where the matrix elements can be obtained by 
I ! 

(11) 

! ! 

C k  ~" \ I l W 2 k - S  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (12) 

Obviously, each pair in G~¢ corresponds to a row of the elements of the matrix• 
Thus the elements change in a parallel way as the pairs in G~v. 

The overlap matrix element is then obtained by 

MN 
(~VBI~B) = ~DI~I(G~c)per(G~¢), (13) 

i=S 

where MN is the number of the pairing patterns of N elements, andper(G~) denotes 
the permanent of the matrix M(G~). 

Hamiltonian matrix element (~va IHI ~B) 
(a) Contribution from one-body operators 
Let GA denote a pair of two elements (as a2), (1 --.<as < a2 ~<N), and ~ denote 

one of the subgraphs o f N  - 2 elements (1, 2, ..., N, without as and a2). For each 
combination of GA and ~ (it forms a graph of N elements), we can construct a 
matrix M(FA, G~i ) as follows: 

(al a2) 
(bs b2) 

(GA,C:) = "'" 
el C2) 

(ds 12) 

M(FA,G A) -_ 

-El  /rE . . .  Fa 
2 

Bs B2 . . .  B~ 
2 

C1 C2 . . .  C_~ 
2 

Ds D2 . . .  D~ 
2 

(14) 

where the first row of the elements, which corresponds to the subgraph GA, is asso- 
ciated with one-electron operators. They can be evaluated by 
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t ~a  ¢ 

+ (q~, 14/~)(4%1f(1)14,~) + (4,~, [4,~)(q~=lf(1)JqCa) 

+ (Oa, Oa2Jg(1,2)l~b'lqS~) + (q~a, q~lg(1,2)[q~qT,) 

(15) 

/ (]~/ I + (qSa, l~b2X--1)(qSa2[f(1)J 21,) + (~ba~JqS~,)(~ba2~(1)Jq~z~-l) 

+ (qSa~ba2Jg(1,2)[qS~_lqS~) + (~o ,~o~ lg (1 ,2 )1~_~) .  (16) 

The other matrix elements are obtained in the same way as shown in eq. (12) for 
overlap. One should note that the partial contribution from two-electron operators 
is included in the above expression, as it can be treated in exactly the same way as 
one-electron operators. 

The total contribution of one-electron operators and partial contribution of 
two-electron operators is obtained by 

N MN-2 

H1 = ~ Z DI~](GA'GJ)per(FA'G~)' (17) 
al<a2 i=1 

whereper(FA, G~) denotes the permanent of the matrix M(FA, GiA). The first sum- 
mation runs over all possible pairs (al a2)(1 ~<al < a2 <~N), and the second sum- 
mation runs over the subgraphs of N - 2 elements (1, 2, . . . ,  N, without al and a2), 
and DI~I(GA, G~) is the Dll-value of the pairing graph which consists of the pair 
GA and the subgraph G~/. 

(b) The remaining contribution of two-electron operators can be obtained in 
the following way: 

Let GAB denote a subgraph of four elements a, b, c and d(1 ~< a < b < c < d 
~< N); it consists of two pairs A (al a2) and B(bl b2), where (al, a2, bl, b2) E (a, b, c, 
d), and C~/B denotes one of the subgraphs of N - 4 elements (1, 2, ..., N, without 
a, b, c and d). Obviously, any combination of (GAs, C~i B) forms a pairing graph of N 
elements. Suppose this pairing graph and the corresponding matrix take the follow- 

(GAB, G/AB) = 

ing forms: 

al a2) 

(bl b2) 

c2)' 

(dl d2) 

M(GAB, G{ B) = 

A1 A2 . . .  A_u 
2 

B1 B2 . . .  B_u_ 
2 

G C2 . . .  C_~ 
2 

D1 D2 . .. Du 

(18) 
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where the matrix elements are evaluated by eq. (12). The permanent of the matrix 
M(GAs, G~i s) can be obtained by Laplace expansion in the following way: 

per(GAs, G~ s) = Z M~tsL~ff , (19) 
k<l 

where M a t  s are subpermanents of the first two rows which correspond to pairs A 
and B, i.e. Mat s = AkBt + AtBk, and L~t s are the corresponding cofactors, i.e. the 
subpermanents corresponding to the subgraph G/A/s without kth and/ th  columns. 
To evaluate the two-electron contribution of this graph which has two pairs A, B 
associated with two-electron operators, we have a similar expression: 

per(gAs, G: s) = Z g~kff L~ff , (20) 
k<l 

where g~kff are factors of two-body operators related to the first two pairs A, B. 
The explicit expression ofg~k ff is shown below: 

2 2 2k 21 

g~kff = Z~--~- Z ~_~ (gijrsSi, r, Sj, a,+gijs, Si,s, Sj,,.,), (21) 
i=l j=l r=2k-1 s=21-1 

where 

gijrs = (~b~,(1)~bbj(2)lg(1,2)l~b'r(1)~b',(2)), (22) 

Sir = (~a,l~lr), Sjs = @)bjl~)ts), (23 )  

and 

i + i ' = 3 ,  j + f = 3 ,  r + / = 4 k - 1 ,  s + s ' = 4 1 - 1 .  (24) 

Obviously, g~kfl contains 32 terms, and they always appear as a compact unit. There- 
fore the computational effort is reduced greatly. 

The total contribution is obtained by 

N MN-4 

112 = y~ ~_, Z DI~ll(GAB' GAis) per(gAB, GAs). (25) 
a<b<c<d Gas i=1 

From eqs. (17) and (25), we can obtain the total Hamiltonian. 

3. Evaluation of permanents by successive Laplace expansion 

The definition of permanents is quite similar to that of determinants. However, 
the permanents fail to inherit two key properties of determinants, the multiplicative 
properties and the invariance under elementary operations on matrices; therefore 
it is more difficult to evaluate a permanent. The evaluation of the permanent of an 
n x n matrix by direct use of the definition requires (n - 1)n! multiplications, thus 
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this method is impracticable for large N. A complete account of the theory of per- 
manents, applications and methods for the evaluation of permanents is given in ref. 
[19]. For general matrices, three methods are available, together with some variants 
of them: the Jurkat-Ryser method [19b], the Binet-Minc method [19a], and the 
Ryser method[19c]. The numbers of multiplications required by the three methods 
are 4 n, (n/2) n/~ and (n - 1)(2 n - 1), respectively. Obviously, the Ryser method is 
the most efficient. This method begins with the product of the row sums of the 
matrix, and then discards the superfluous terms in the product. A modified variant 
of this method [19d] reduces the number of multiplications by a factor 2. In the pre- 
vious paper [15], a simple method was introduced. In this method, the subperma- 
nents of higher order are computed by using the subpermanents of lower order, and 
the permanents are finally obtained by the successive use of the Laplace expansion 
of permanents. The efficiency of this method is very close to that of the improved 
Ryser method [19d]. For example, the evaluation of a permanent of order 12 
requires 2.4 x 10 4 multiplications by the successive Laplace expansion method 
[15], and the improved Ryser method requires 2.3 x 10 4 multiplications for the eva- 
luation of the same permanent. The advantage of the Laplace expansion method 
is that this method can be easily complemented in a computer program, and is quite 
suitable for the systematic summation of a huge number of permanents. In the fol- 
lowing sections, it will be discussed how the successive Laplace expansion is used 
in the new algorithm. 

4. Basic idea of the new algorithm 

The motivation of this work comes from the following consideration: in the 
permanent method of VB calculations, we always deal with the sum of permanents 
of a huge number of matrices, and from one matrix to another, there might be 
only a small part of the matrix elements of them are different, therefore one should 
concentrate on the development of a global, overall efficient, algorithm by using 
such a fact. Similar "global strategy" in the Slate>determinant expansion of VB 
calculations is well developed by Raimondi and Gianinetti [20], Rettrup and 
Thorsteinsson [21] and Cooper et al. [4]. As a simple example to explain the idea of 
systematic summation of a set of permanents, let us consider the summation of 
the permanents of the following 9 pairing graphs: 

(1 2) (1 2) (1 2) (1 3) (1 3) (1 3) (1 4) (1 4) (1 4) 

GA~ (3 4 ) ( 3  4 ) ( 3  4 ) ( 2  4 ) ( 2  4 ) ( 2  4 ) ( 2  3) (2 3 ) ( 2  3) 

(5 6) (5 7) (5 8) (5 6) (5 7) (5 8) (5 6) (5 7) (5 8) 
GcD (7 8 ) ( 6  8) (6 7 ) ( 7  8) (6 8) (6 7 ) ( 7  8) (6 8) (6 7) 

1 1 1 1 1 1 1 1 
DII(GABcD) 1 2 2 2 -4 -4 2 4 -4 
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Obviously, each pairing graph consists of two parts, GAs and GcD, and each 
part has 3 possible patterns (subgraphs i i GAS, Gc~, i = 1, 2, 3) as following: 

(1 2 ) ( 1  3 ) ( 1  4 ) ( 5  6 ) ( 5  7 ) ( 5  8) 

(3 4) (2 4) (2 3) (7 8) (6 8) (6 7) 
als 

and the 3 x 3 combinations result in the 9 pairing patterns shown above. 
There are two ways to perform the summation. The first way is to evaluate the 

9 permanents separately, and then sum the contributions from each of them. For 
example, let us consider the permanent of the pairing graph (G~s, GbD )" 

pairing graph matrix subpermanents 

G~ s (1 2) FAI A~ A~ A 1] 
(3 4) ]BI e 1 B~ B4~[ 

G1 D (5 6) ' /C~ C~ C] C41 / 
(7 8) LDI D21 D~ D~J 

where 

ABll 1 1 1 1 = AkB 1 + AtB ~ 

CDlkl I 1 1 1 = C]~D l + C] D k 

1 1 ABI4 ' 1 13 1 AB12, AB13, AB23, AB24, AB34 
CDI2, COla, CDI4, CD13, CD14, CD~4 

(1 _~ k < l < 4). (26) 

The permanent of the matrix shown above can be obtained by Laplace expansion: 

1 1 A B I 3 C D I 4  per(G1as, G1D) = AB~2CD~4 + ABI3CD14 4- AB14CD23 4- 

4- AB14CDll3 4- AB~4CDll2 . (27) 

For other different subgraphs, we can also get the corresponding sets of subperma- 
nents: 

G~s: 2 {CDkl}, GaD:{CD3kt} (1 < k < l < 4). 

Thus the first way of summation can be represented by the following expression: 

3 3 

S V M  = v "  Dt l " %) 11 ( GiAB ' GIcD) per( Gias, 
i=1 j= l  

3 3 
• " i D ( ~  ---- E Z.~ ~-~ DH(G/As'll G/CD)(AB~2CDt34 4- AB~3CD~4 4- AB14C 23 

i=1 j = l  

4- AB~3CD~4 4- ABi~4CD~3 4- AB~4CD~2 ) . (28) 
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The numbers of multiplications, additions and subtractions involved in the above 
procedure are 60, 49 and 4, respectively. 

In the second way, we treat the summation of the 9 permanents as a whole. As 
mentioned above, the 9 pairing graphs {GABcD(i,j)} consist of two subgraphs GiAB 
and C,:CD ( i , j  = 1, 2, 3). Moreover, if we assign values to these subgraphs in the fol- 
lowing way: 

d(G~B ) = 1 d(G2B) = _ l ;  d(G3AB) 1. d ( G I D ) =  1; 

then we have 

D[:,]:~i GJCD) d(G~s  ) d(GJcD) (29) 11 k'-'AB~ ~ " " 

With this relation, we can rewrite eq. (28) in the following form: 

That means, instead of performing the summation of the 9 permanents separately, 
we can first sum over the subgraphs {G~B } and {dcD }, and obtain the two sets of 
'"contracted subpermanents" {ABkt  } and { CDkt} as written below: 

3 
AB i ABkt  = d (G i ) " AB'kt 

i=1 

= A B l t - ½ ( A B ~ t  + AB~t ) , (31) 

3 
cD , ,  = d CD , 

i=1 

= D ~ t - ½ ( C D 2 t  + CD3k,). (32) 

Then we can obtain the full sum of the 9 permanents by the following expression: 

S U M  = AB12 • CD34 + AB13 • CD24 + AB14 • CD23 

+ AB23 " CD14 + AB34" CD12. (33) 

The numbers of various operations in this procedure are shown as following: 

multiplications: 18; additions: 17; subtractions: 12. 

Obviously, the second way is much more economical than the first one. This simple 
example shows us that from the starting point of the permanent method we can go 
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much further to achieve higher efficiency of nonorthogonal VB calculations. To 
deal with the general cases, we need a systematic method. Besides, as the summa- 
tion involves both the left cosets (pairing graphs) and their Dll-Values, we need suf- 
ficient knowledge about the mathematics of left cosets and properties of Dll-  
values. In the following section, some results concerning the properties of Dll-  
values ofcosets are discussed. 

5. Propert ies  OfDll-Values of lef t -cosets  

As mentioned above, each left coset can be characterized by a pairing graph of 
N elements, and there is a one-to-one correspondence between the pairing graphs 
and the left cosets. Thus it is more convenient to use graphic language in the follow- 
ing discussion. It can be known that the number of pairing graphs of N (even num- 
ber) elements MN takes the following value: 

N/2 

M r =  I I ( 2 k -  1). (34) 
k=l 

Obviously, MN is a rapidly increasing number. For example, M20 = 6.5 x 108. It 
would be a very difficult task to accumulate the contributions of a huge number of 
permanents in a direct way. However, one should note that this large number comes 
from the combination of a quite limited number of pairs, thus it is always possible 
to classify the graphs into a number of subsets, and in each subset all the pairing 
graphs have a subgraph, say gl, in common, and the differences among them come 
from the subgraphs g2, the remaining parts of the graphs. To obtain the sum of all 
the permanents corresponding to one subset of the graphs, one can first run the 
summation over all subgraphs g2 and obtain a set of intermediate quantities. The 
subpermanents corresponding to the subgraph gl need to be computed only once. 
After that the sum of all the permanents can be easily obtained by Laplace expan- 
sion using the subpermanents and the intermediate quantities. 

The following properties of D11-values of pairing graphs make it possible to do 
the summation of permanents in a more systematic way. Suppose we have a subset 
of pairing graphs in which all the members have a subgraph g2, of n pairs in com- 
mon, while the subgraphs g/N-Z. (of the remaining N/2 - n pairs) are all different, 
then it can be known that the number of the graphs of this subset is exactly the same 
as the number of the pairing graphs of N - 2n elements, and the Dll-values of the 
pairing graphs in the subset changes in a parallel way as the Dll-values of the left 
cosets Of SN-Z" as 

= ( 3 5 )  DI~INI(gz",g~N_Z") F(gz") • ~11 

where F(gZ.) is a constant, which depends on gZ., [,kZ.] = [2 N/2, 1°], [)~N-Z~] 
= [2 N/2-", 10], and G~v_Z. are the pairing graphs of the left cosets of St¢-~. The 
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details about the constant factor F(g2~) and one-to-one correspondence of g"N-2~ 
and G~v_2n are given in Appendix for the case n = 1 and 2. 

6. A n e w  p r o c e d u r e  for evaluat ing Hami l ton ian  matrLx elements 

(a) Subgraph-represen tatives and the contracted cofactors 
In VB calculations we need to evaluate both overlap and Hamiltonian matrix ele- 

ments of VB wavefunctions. The most time consuming step is to evaluate Hamilto- 
nian matrix elements, especially the two-electron terms. In the permanent 
formalism the most time consuming step is that given by eq. (25). In this section we 
concentrate on this step. The evaluation of the overlap matrix elements and the 
one-electron contribution becomes quite easy after this step, because all the 
required intermediate quantities are available after that. 

From eq. (20) we can rewrite eq. (25) in the following form: 

N MN~ 
H2 = ~ Z ~ DI~](GAB' G~ B) " Z.., X-~g~BLAB:i~kt k, ~:, (36) 

a<b<c<d GAs i=1 k<l 

where GAB is a subgraph of 4 elements a, b, c and d, and G~i B are subgraphs of 
N - 4 elements (1 2, ., N, without a, b, c and d), g.~S , • • kJ are the two-electron factors 
associated with two pairs A, B, i.e. the subgraph GaB, and L~fl(i) are the corre- 
sponding cofactors, i.e. the subpermanents without the rows A, B, and columns k, l, 
index i means that the subpermanents correspond to subgraph G: B. In the summa- 
tion, the group theoretical factors, the D11-values are involved. As shown in the pre- 
vious section and Appendix, we have 

Dll(GAB, G{ B) = FABDll(GiN_4) ( i =  1 ,2 , . . .MN-4) ,  (37) 

where 

G~¢_ 4 --- RABG:  B • (38) 

[:As is a factor which depends on the two pairs A and B, and Dll (G~r_4) (the super- 
scripts [),] are henceforth dropped for clarity) are the Dll-Values of the left cosets 
of SN-4 characterized by graphs G~v_ 4. kAB is an operator which changes subgraphs 
G~ s into G~r_ 4. Thus we can assign values to the subgraphs GAi s and subgraph 
GAB in the following way: 

d ( G :  B) ----- Dll (G~r_4) 

= D l l ( R A B G : B ) ,  (39) 

d(GaB) = FAB. (40) 

In the set of subgraphs (G~i B, i = 1, 2, . . . ,  MN-4) ,  there is one and only one sub- 
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graph, say Cram s, which has the maximal d-value, i.e. d(Gam s) = 1. Suppose the sub- 
graph C/m s takes the following pairing pattern: 

(el e2) 

(fl f2) 

(gl g2) 

then the operator RAB can be expressed as follow: 

~AB=(11 e2 J~ J2 . . .  gl g2 ) .  (41) 
2 3 4 . . .  N - 5  N - 4  

Details about how to find the operator RAs and consequently the subgraph C/m s 
were given in Appendix. From this special subgraph, we can find the other members 
of the set (C~i s, i = 1, 2 , . . . ,  MN-4) and obtain their d-values by eq. (39). Therefore 
we can choose G as as the representative of the set of subgraphs {G/s}. It not only 
characterizes a set OfMN-4 subgraphs, but also their d-values. 

From the expression of the two-electron factors, eq. (21), one can see that it 
requires considerable efforts to compute these factors {g~k~}- Fortunately, it is not 
necessary to evaluate them each time at the summation over the subgraphs, as the 
two-electron factors {g~kff} are independent of the subgraphs G/B. Therefore it is 
appropriate to execute the summation of the cofactors L~(i)  over these subgraphs 
as 

N M,v.-4 

H2 = ~ ~ FAB ~--~.g~kt B y~. d(G~S)L~(i) (42) 
a<b<c<d GAB k<l i=1 

N 

= Z ~ FAB y~g~k~La~, (43) 
a<b<c<d GAB k<l 

where 

MN-4 
L:: = d(G/s)L::(i) (44) 

i=l 

and we call {L~:}(l <~k < I <~N/2) the "contracted cofactors" which correspond 
to the set of subgraphs {G:B}. In the program we use Gain s, the subgraph-represen- 
tative of this set, to characterize these contracted cofactors. Thus for each sub- 
graph-representative, there is a set of contracted cofactors. 

After the contracted cofactors have been obtained, the summation is greatly 
reduced as shown by eq. (43). Thus the next step is to find an efficient way to obtain 
all the contracted cofactors. In eq. (43), the first two summations go through all 
possible ways of choosing two pairs A, B out of N elements. The number of the first 
two summations can be given as 
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MAB : N ( N -  1 ) ( N -  2 ) ( N -  3)/8. (45) 

While it is known that the number of unique subgraph-representatives involved in 
eq. (43), No(N,  4), is given by 

NG(N,4) = U ( U -  2)(U 2 - 8N + 17)/8. (46) 

Obviously Na(N,  4) is less than MAB. This leads to the reduction of the computa- 
tion in a certain depth. Now the major problem is how to compute the contracted 
cofactors of all the unique subgraph-representatives in a systematic and efficient 
way. Let us consider how to execute the summation over the subgraphs {G~/B} in 
eq. (44). Suppose the subgraph G~/B and the corresponding submatrix M~S(i) take 
the following form: 

(cl c2) 
G:B: (dl d2) , 

(hi h2) 

Cl . . ,  Ck-1 Ck+l . . .  Cl-i Cl+l . . .  ~ ]  

aB . Dx . . .  Dk-] Dk+l . . .  DIM Dt+] . . .  D_~j 

[;,i iii . . . . . . . . . . . . . . . . . .  " 

(47) 

We can evaluate the permanent of the matrix ,4B • AS • M~t (z), by ex- Lkl (t), Laplace 
pansion: 

L~fl ( i) = ~ . ABC • Cm(1)Zkl m (l), (48) 
m¢k,l 

where Cm(i) are the elements of the first row, which corresponds to the first pair 
(Cl c2) of G~/s, and ABC. Lkt m (z) are the corresponding cofactors. Thus eq. (44) 
becomes 

MN-4 

0). L y= d(G:") cm " A.c. 
i=1 m~k,l 

(49) 

The first summation runs over all possible subgraphs of N - 4 elements (1, 2, ..., 
N, without a, b, c and d). Let "e" be one of the elements, then it is always possible to 
choose a pair containing element "e", say (e f) ,  as the first pair Gc of the subgraph 
GAB. Let Gflj sc  denote the subgraphs of the remaining N - 6 elements (1, 2, ..., N, 
without a, b, c, d, e and f) .  The combination of (Gc, G~j sc) provides part of the sub- 
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graphs {C~/s}. If one replaces the e l emen t f  by other elements and performs the 
same procedure, one obtains all subgraphs {C~/s}. Thus we can rewrite eq. (49) as 

M~t-~ 
CmL jm (j), (50) 

Gc j=l rnT~k,l 

where Cm are elements of the first row corresponding to Gc. The first summation 
runs over N - 5 possible pairs Gc which have a fixed element "e". Usually we 
choose the smallest element as the timed element in Gc. The second summation runs 
over MN-6 subgraphs of the remaining N - 6 elements. Moreover, as it can be 
known from the above discussion, the d-values of subgraphs {G~/s} can be repre- 
sented by the D I 1-values of the pairing graphs of SN-4: 

d ( G :  B) = Dll(G~v_4) , (51) 

where 

G~_ 4 ~- R A B G : "  . 

Therefore we can factorize the d-values of G~/s in a similar way as for the Dll-Values 
of  G~_4: 

d( Gc, G: sc) = Dll (RaBGc, RaBG: sc) 

= FC" Dll(RaBcG: Bc) 

= FC" DI1 (GIN_6) , (52) 

where Rasc is an operator to renumber the elements of subgraph Gflj Bc. Details 
about how to construct this operator are shown in Appendix. The constant Fc can 
be simply determined in the following way: suppose the pair Gc = (e f) ,  then 

1 if PA(RaBe) = Ra~f 
Fc = '1 ' (53) 

- ~ ,  otherwise, 

where PA(n) is an integer function defined in Appendix. Thus we can assign to the 
pair Gc and to the subgraphs G~j sc  the following values: 

d(Gc) = Fc, 

d(Cl Be) = Dll (kABcGff ) • (55) 

Similarly, we can define the subgraph-representative of the set of subgraphs 
{G~j sc} as one that has the largest d-value. If we denote this subgraph as Cram Bc, we 
haved(Gam Bc) = 1. 

As the elements Cm depend only on the pair Gc, one can compute the contracted 
cofactors Lkat B by the Laplace expansion method shown in eq. (50). Therefore it is 
appropriate to sum over the subgraphs {G~j sc} first: 
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MN-6 

= L; . .  (j)d(G: ) 
Gc mCk,I j---1 

- -~ -~  Fc ~ r~ rABC 
- -  ~rnL,klm 

Gc m¢k,l  

where 

(56) 

MN-6 
z f fc  • d(Gff c) (57) lm ~ ~ ABC • L;lm (J) 

j= l  

and we call L ~  c (1 ~<k < l < m<~N/2) the contracted cofactor of order ~/N - 3. 
Such a set of contracted cofactors can be characterized by the subgraph Cc~ sc. An 
important advantage of using contracted cofactors is that it is not necessary to eval- 

ABC each term L~ff, while the evalua- bate all the involved terms {Lkl m }(m ~ k, l) for 
tion of the contracted cofactors ABC {Lkt m } is the most time consuming step for 
obtaining the higher order contracted cofactors AS {Lkl }. In fact, to evaluate a set of 
C(½N : 2) contracted cofactors {L~ff} of a subgraph-representative of N - 4 
elements, N -  5 subgraph-representatives of N -  6 elements are involved, and 
each of them has a set of C(½N : 3) contracted cofactors 1.JrABClL'klm 1, where C(m : n) 
= m!/[n!(m - n)!]. To evaluate each term L~ fl, the 1N - 2 contracted cofactors of 
each lower subgraph-representative are used, the contracted cofactors of lower 
order are therefore repeatedly used for evaluating all terms As {Lkt } of the same sub- 
graph-representative, because C(½N: 2) (½N-  2) > C(½N: 3). It means that by 

ABC using lower contracted cofactors {Lkt m }, the computational effort for evaluating 
{L'~ fl} is reduced by a factor 

RA = C(½N : 2) (½N-  2)/C(½N : 3) 

= 3. (58) 

Generally, in the step to evaluate the contracted cofactors of order n, the most 
time consuming part is to evaluate contracted cofactors of order n - 1, while the 
above procedure leads to a reduction of computation by a factor of (1N - n - 1). 

A further significant reduction of computation effort comes from the following 
fact: the lower contracted cofactors are not only repeatedly used for the contracted 
cofactors of one higher subgraph-representative, but also might be repeatedly 
used for the contracted cofactors of other different subgraph-representatives. Let 
NG(N, 2n) denote the number of unique subgraph-representatives of N -  2n 
elements. To evaluate the contracted cofactors of each subgraph-representative of 
N - 2n elements, the contracted cofactors of N - 2n - 1 lower subgraph-represen- 
tatives will be involved. Thus to evaluate the contracted cofactors of all No(N, 2n) 
subgraph-representatives of N - 2n elements, in principle No(N, 2n)(N - 2n - 1) 
lower subgraph-representatives have to be determined. However, the number of 
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Table 1 a 
The numbers of unique subgraph-representatives in the subgraph-driven method for nonorthogonal 
VB calculations of the N-electron system. 

Numberofuniquesubgraph-representatives 

Numberofelementsinsubgraphs: 
4 6 8 10 12 14 16 

N 8 102 
10 222 370 
12 370 1390 975 
14 650 2780 5415 2121 
16 975 7220 12635 15771 4060 
18 1515 12635 51555 42056 37996 7092 
20 2121 26285 103110 2 4 4 2 1 6  113988 80172 11565 

unique lower subgraph-representatives, N o ( N ,  2n + 2), is usually much smaller. 
Thus to evaluate the contracted cofactors of  a subgraph-representative, it is not  
necessary to evaluate the contracted cofactors of  all lower subgraph-representa- 
tives involved. This leads to an essential reduction of  computa t ion  by a factor 

Rn = N o ( N ,  2n)(N - 2n - 1)~No(N,  2n + 2). (59) 

Obviously, the above strategy can be continued until we get all the unique 
subgraph-representatives of  4 elements. In each step we can achieve a reduction of  
computa t ion  by a factor RA × RB, therefore the whole computa t ion  of  nonor tho-  
gonal VB calculations is greatly reduced. The numbers of  unique subgraph- 
representatives of  various orders are obtained by a graph-analysis programm. The 
results are shown in table 1 a. The reduction factors for each step are shown in table 
lb. It can be seen that  the numbers of  unique subgraph representatives increase in 
a quite modera te  fashion with the increasing number  of  electrons N. Moreover,  the 

Table lb 
The reduction factors by using contracted cofactors of various orders. 

Reduction factors 

Order of contracted cofactors: 
2 3 4 5 6 7 8 

N 8 6.2 
10 33.3 5.1 
12 94.0 19.6 4.6 
14 128 68.2 14.1 4.2 
16 259 73.5 56.2 11.3 4.0 
18 334 200 44.9 50.0 9.7 3.9 
20 558 220 149.2 30.8 45.7 8.7 3.8 
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new algorithm is quite suitable for vectorization and parallelization on large 
computers. 

( b ) Subgraph-driven procedure 
The contracted cofactors of the highest order can be contructed systematicly by 

recurrence starting from the contracted cofactors of order 2, which correspond to 
subgraph-representatives of 4 elements. Suppose one subgraph-representative G4 
and its other two members and the corresponding matrices take the following 
form: 

(el e2) [El EE 

( f l f 2 ) '  e2 . . .  

d(G4) = 1, 

. . .  

v J' 

(el f l)  [E~ E L .. .  E~] 

(e2 A )  ' IF( F; . . .  

d (a l )  = _ 1  

E" ] (el f2) E~' E;' . . .  

( e E f l ) '  F~' F~' f "  ' 
" ' "  ~ A  

d(C ) = _ 1  

(60) 

where the matrix elements are evaluated by eq. (12) according to the pairing pat- 
terns. The contracted cofactors corresponding to the subgraph-representative G4 
can be evaluated by the following formula: 

EFkI = (EkFt + EIFk) - ~i ~'-"k~ P' + E~F~' ' + "-'k~117"~" + E~ F~) " 

In the program, these quantities are stored in a two-dimensional array, in which 
each column is a set of contracted cofactors of a subgraph-representative. Gener- 
ally, after obtaining all the contracted cofactors of order n, the quantities of lower 
order can be discarded. One can evaluate the contracted cofactors of order n + 1 by 
using only the contacted cofactors of order n as shown below: 

LAB...C (61) z"rz-~kl...mr 
GD r-~k,l,...m 

where L a B c  are contracted cofactors of order n + 1, and L aB'cD are contracted 
cofactors of order n, Dr a r e  matrix elements corresponding to the pair GD (i.e. a sub- 
graph of 2 elements), and the F9 is the group theoretical factor associated with the 
pair GD. To evaluate the contracted cofactor of order n + 1, the lower contracted 
cofactors of 2n + 1 subgraph-representatives are involved. The first summation in 
eq. (61) goes over 2n + 1 combinations of a pair GD and a subgraph representative 
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of 2n elements. The second summation comes from the Laplace expansion. Thus 
for each subgraph-representation of 2n + 2 elements, we need 2n + 1 terms to 
describe the 2n + 1 combinations, and each term gives the following information: 
the pair D, the factor FD, and the index of the subgraph representative. As all these 
group theoretical quantities are independent of the chemical system under consid- 
eration, it is more convenient to store all these quantities in a universal file, and 
they can be used forever. The whole computational process is controlled by such a 
universal file, which represents the knowledge of all unique subgraph-representa- 
tives. Thus this procedure is called "subgraph-driven" method. After evaluating 
the two-electron term of the Hamiltonian, all the required contracted cofactors of 
order ½ N - 2 are available for evaluating the one-electron part and the overlap. In 
fact, both of them are computed during the calculation of the two-electron term. 

( c ) Comparison with other methods 
In connection with this work, it might be interesting to mention the works of 

quite a few other authors [4,16,17,21]. Similar recurrence relations of left coset 
decompositions are described by Gerratt [16] and were used by Pyper and Gerratt 
[17] to construct density matrices of various order D (n). However, the explicit eva- 
luation of the group representation matrix elements of permutations is avoided in 
this work. The use of graph theory in the Slater-determinant expansion of VB calcu- 
lations was represented recently by Rettrup and Thorsteinsson [21], and was 
applied by Cooper et al. [4] in the spin-coupled VB theory. The essential idea in this 
work is similar to the strategy in the "super-cofactor" method [4], that is to avoid 
repeated computation by introducing some kind of intermediate quantities which 
will be frequently used in the overall computation. Therefore this strategy reduces 
significantly the computational effort in the group theoretical approaches. 
Although this paper is concentrated on the efficiency of evaluating one individual 
VB matrix element, it is possible to follow the same global strategy in the calcula- 
tions of the multistructure VB wave functions. A detailed discussion on this is 
beyond the scope of this paper. 

7. Programming and the efficiency of  the new algorithm 

A new version of the program AMOY-VB has been developed according to the 
formalism shown above, To run the program, a universal file which is related only 
to the symmetric group SN is used. This file can be created by the graph-analysis 
program, and the size depends on N, the number of electrons of the system. 
Usually, the CPU time for creating this file is comparable with that for the VB cal- 
culations, thus it is better to prepare this file separately, and store it in a permanent 
file for repeated use. In addition to the capability of performing multistructure 
VB calculations, the program can also be used for the orbital optimization. The 
super-CI method [22] and the DIIS [23] technique have been implemented in the 
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program. To evaluate all the VB matrix elements in an efficient way, the program 
also follows a global strategy. Details of the algorithm for the efficient evaluation 
of the super-CI matrix elements will be reported elsewhere. 

To check the program, some testing calculations of simple systems were per- 
formed. As there are no data of nonorthogonal VB calculations for more than 12 
electrons available, we have chosen some special hypothetical systems consisting of 
hydrogen atoms: 

H - - H - - H . . .  H 

RI I I I 
H - - H - - H . . .  H 

R 

where R is the distance between two hydrogen atoms. The reason we have chosen 
these system is that we can make predictions even without VB calculations, and 
therefore it is able to make comparison with the explicit VB calculations. 

(a) A well-known advantage of VB theory is that it can give the correct results 
for the dissociation limit. Thus the first test calculation is done for H16 with distance 
R --- 10A. In this case, the VB energy should be very close to the U H F  energy. 
This is exactly the case (no difference within the machine accuracy). 

E(UHF)  = -7.46530960615 a.u. (STO-3G), 

E(VB) = -7.46530960615 a.u. 

(b) VB calculation of doubly occupied system: H~- with R = 1.0 A. As the mini- 
mal basis set is used, all the 8 linear independent orbitals are doubly occupied by 
the 16 electrons, and any kind of many body wave functions have the exactly the 
same energy. Our VB program also gives the same value: 

E(RHF)  = 12.0093959554 a.u. (STO-3G), 

E(VB) = 12.0093959554a.u. 

(c) H ~  (n = 1 ,2 , . . . ,  10), with distance R = 1.0/~. We can expect for H2n that: 
(1) As a H2 unit is added to the chain, the increment of the total energy of H2n should 
converge to a definite value quickly. (2) The overlap of the VB function should 
change in an exponential way, i.e. S n = S n-1 • S O, where S n = ( ~ l ~ )  and S O 
converges to a constant quickly. This is the case as shown in table 2. 

(d) CH4, with R c - s  = 1.082 (optimized geometry with 6-31G/RHF).  The self- 
consistent-field valence bond (SCFVB) calculation and the spin-coupled VB 
(SCVB) [4] calculation were performed for this molecule using 6-31G basis set. In 
the SCFVB calculation, 8 orbitals for constructing the four C-H bonds were opti- 
mized using the super-CI method [22] and DIIS technique [23]. It turns out that 4 
optimized orbitals have strong parentage of the four coresponding sp 3 hybridized 
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Table 2 
The total energy (a.u.) and overlap of Hz.. The STO-3G basis set is used. 

315 

2n E(VB) AE = En - E . - I  S" S o = S" I S n-l  

2 -1.076241 -1.076241 1.246497 1.246497 
4 -1.850558 -0.774317 0.965155 0.774294 
6 -2.633248 -0.782690 0.744548 0.771429 
8 -3.415835 -0.782587 0.573915 0.770823 

10 -4.197545 -0.781710 0.442283 0.770642 
12 -4.979258 -0.781713 0.340847 0.770654 
14 -5.760944 -0.781686 0.262675 0.770654 
16 -6.542619 -0.781675 0.202431 0.770652 
18 -7.324290 -0.781671 0.156004 0.770653 
20 -8.105959 -0.781669 0.120225 0.770653 

orbtials of  the carbon atom, and the other 4 orbitals have obvious parentage of  
the corresponding s-orbitals of hydrogen atoms. The energies of SCFVB and 
SCVB wave functions, respectively, are given as following: 

E(SCFVB) = -40.24281587 a.u.,  

E(SCVB) = -40.24678847 a.u.,  

E (RHF)  = -40.18055416 a.u.,  

where E(RHF)  is the energy of the Har t ree-Fock wave function. The optimized 
orbitals from the SCFVB calculation were used for the construction of  the SCVB 
wave function without further optimization. The 14 independent VB structures are 
all included in the SCVB calculation. It is found that  the SCFVB wave function 
has a very large overlap (0.997) with the SCVB wave function (both wave functions 
are normalized). This also means that  the SCVB calculation does not  change 
much  the wave function in the case of  methane molecule. 

The above test calculations make us certain that the new algorithm is both  theo- 
retically and technically correct. Moreover, the practice shows that  the new pro- 
gram is very efficient, and the CPU time increases in a quite moderate  way with 
increasing N. Table 3 shows the CPU time and the approximate estimation of  the 
number  of  multiplications for a single VB calculation. 

Table 3 
The CPU-time T (s) of nonorthogonal VB calculations of N electrons on HITAC/S820 and the ap- 
proximate estimation of the number (M) of multiplications. 

N ~< 10 12 14 16 18 20 
T < 0.1 0.5 2.0 7.5 35 227 
M 2.3 × 106 8.6 × 106 8.8 × 107 6.9 × 108 5.9 × 109 
N! 4.8 × l0 s 8.7 × 101° 2.1 × 1013 6.4 × 1015 2.4 × 1018 
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8. Summary 

In this paper, a highly efficient algorithm for nonorthogonal VB calculations is 
proposed in the group theoretical formalism. The efficiency of the new algorithm 
comes from two aspects: (a) The contracted cofactors are introduced as the inter- 
mediate quantities, which are repeatedly used in the systematic summation over all 
permanents. These quantities can be characterized by some pairing graphs of 2n ele- 
ments (n = 1, 2, . . .),  and each pairing graph of 2n elements corresponds a set of 
C(½ N : n) contracted cofactors. (b) The numbers of pairing graphs of various order 
in the "subgraph-driven" procedure increase in a quite moderate way with the 
increasing number of electrons. Repeated computation is efficiently avoided in the 
new algorithm. Further improvement of the program will be on technical aspects, 
e.g. vectorization and parallelization on large computers, and installation of some 
new supporting codes. 

The present work shows that it is possible to find a powerful algorithm in the 
spin-free formalism of VB wave functions and gives us strong confidence in the 
group theoretical approach. In principle, the same strategy can be used for the case 
of spin S > 0. Actually, the case of spin S = i can be treated in exactly the same 
way as the case ofS  = 0. 
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Appendix 

It can be shown that among all the pairing graphs of N elements, there is one 
and only one graph which has the maximal absolute D11-value, and we denote this 
graph as G~v. It has the following pairing pattern: 
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(1 2) 

(3 4) 

( 2 k -  1 2k) 

• . • 

( N - 1  N) 

Before further discussion, let us define an integer function PA (n): 

P A ( 2 k -  1)=  2k 
( k =  1,2,. . .) .  

PA(2k) = 2 k -  1 
(62) 

Obviously function PA (n) is an operator to find the partner of number n in the pair- 
ing graph G 1. 

Now, let us consider a subset of pairing graphs of N elements. In this subset, 
every graph has a pair A(= (ax a2), al < a2) in common. Obviously, each pairing 
graph of this subset can be partitioned into two subgraphs GA and C~i, where the 
subgraph GA consists of the pair A, and the other subgraph G~/is one of the pair- 
ing graphs of N -  2 elements (1, 2, . . . ,  N, without al, and a2). There are two 
cases. 

CaseI: eA(al)  = a2, that means if al is an odd number, say 2k - 1, then a2 is the 
consecutive even number 2k. 

In this case we have the following results: 
(a) There is one and only one graph G~x in this subset which has the maximal abso- 

lute D11-value, and it has the same pattern as G~v, except one pair (2k - 1 2k) is 
taken away. This subgraph ~ is 

(1 2) (1 2) 

(3 4) (3 4) 

( 2 k - 3  2 k - 2 )  k ( 2 k - 3  2 k - 2 )  

( 2 k + l  2k+2)  ( 2 k - 1  2k) 

( N - 1  N) ( N - 3  N - 2 )  

(b) Let R be a operator which renumber the elements in subgraphs G:I in such a 
way that it changes C_~I, as shown above, into G~v_ 2. For example, one can choose 
such an operator R as 
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• = ( i  2 3 4 ... 2 k - 3  2 k - 2  2 k + l  2k+2 ... N - 1  N ) 
2 3 4 2 k - 3  2 k - 2  2 k - 1  2k . . .  N - 3  N - 2  

Then we have 

(63) 

DII(GA, G/A) = DII (G~_2)) (64) 

where 

G ,_2 = kG: (65) 

and Dll (G~r_2) is the Dll-Value of the pairing graph of the symmetric group SN-2. 

CaseII: PA(al) ¢ a2. Supposeal E ( 2 k -  1,2k),anda2 c ( 2 l -  1,21),k < l. 
In this case, C~I has the same pattern as G 1, except two pairs (al PA(al)) and 

(a2 PA(a2)) are replaced by one new pair (PA(al) PA(a2)). Let R be an operator 
to change G~ into G~v_2; for example, 

R =  (1 ... 2 k - 2  PA(al) PA(a2) 2 k + l  ... 2 l - 2  2l+1 2•+2 
\ 1 . . .  2 k - 2  2 k - 1  2k 2 k + l  ... 2 l - 2  2 l - 1  2l 

then we have the similar expression: 

Dl l (GA,  G:) = - -1DI I (G~_2)  , 

where 

= kG:. 

(66) 

(67) 

The above expressions show us a way to evaluate the Dll-values of the left cosets 
of SN from the Dll-Values of the lower symmetric group SN-2. Obviously, similar 
relation exists between SN-2 and SN-4. Therefor the above relationship gives the 
complete knowledge about Dll-Values of cosets. Actually, we do not evaluate Dlx- 
values explicitly, while the above recurrence relations are used in the calculations. 
Comparing eq. (64) and eq. (67), they differ from each other only by a factor - 1 
Therefore we can assign a value to subgraph GA, i.e. the pair A, in the following 
way: in case I, the subgraph GA has a factor 1, and in case II GA has a factor - ½. 

Since the two-electron factors g~kfl in eq. (21) are associated with a subgraph of 
two pairs, let us consider such a subset of pairing graphs: each of them consists of 
subgraph Gin and G~j B, where G~B is one of the subgraphs of 4 elements (a, b, c, d) 
(without lose of generality, we can assume that a < b < c < d), and G)4j B is one of 
the subgraphs of the remaining N - 4 elements (1, 2, . . . ,  N, without a, b, c and d). 
There are 3 cases: 

CaseI: PA(a) = bandPA(c) = d. 
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Case H: One pair of  elements from (a b c d), say d and b', satisfy PA (d) = b'. There 
are three subcases: (1) PA(a) = b, eA(c) ~ d; (2) eA(b) = d, PA(a) ~ c; 
(3)PA(a) ¢ b, Ca(c) = a. 

CaselII:PA(a) 7 ~ b, PA(b) 7 ~ candPA(c) ¢ d .  

In case I we can assume a = 2k - 1, b = 2k, c = 2l - 1, d = 2l, and we have 

D11(G~An, G~B)=d(G~B).d(G~ B) ( i =  1 , 2 , 3 ; j =  1 ,2 , . . .MN_4) ,  (68) 

where d(G~B ) take the following values: 

GiAB (a b) (a c) (a d) 
(c d) (b d) (b c) (69) 

1 1 d( G~B ) 1 -~ --~ 

and d(Gflj B) changes in a parallel way as the D11-values of  the left cosets of  SN-4: 

d(G AB) =~ DII  (GIN_4) • (70) 

The correspondence between Gflj n and GJN_4 is set up by the following operation: 

~N-4 = RGS B) (71) 

where the operator  R renumbers  the elements of G~j. n in the following way: 

k = ( 1  ... 2 k - 2  2 k + l  2k+2  ... 2 l - 2  2l+1 2 l+2  ... N ) 
1 . . .  2 k - 2  2 k - 1  2k ... 2 l - 4  2 l - 3  2 l - 2  . . .  N - 4  " 

(72) 

For  case II, it is enough to show the result for the subcase PA(a) = b. In this case 
we can assume a = 2k - 1, and b = 2k, and we have 

DIl(GiaB, GAB) = --½d(GiAB).d(G AB) ( i =  1,2,3; j =  1 ,2 , . . .MN_4) ,  (73) 

where d(GiAn) take the same values as shown in eq. (69) and 

d(G~ B) = D l l  (GIN_4) , 

where 

(74) 

GiN_ 4 ~--- RG AB (75) 

and the operator  R is as shown below: 

~ =  ( 1  . . .  2 k - 2  2 k + 1  2 k + 2  P A ( c ) P A ( d ) . . .  N - 1  N "~ 
\ 1 . . .  2 k - 2  2 k - 1  2k 2 k + l  2 k + 2  . . .  N - 5  N - 4 J "  

(76) 

For  case III,  we have 

DII(GiaB, G:B) = 1  /J ~Dll (GN_4), (77) 
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where 

G~_ 4 = RiG~. n ( i =  1,2,3; j = 1 , 2 , . . . M N - 4 )  (78) 

and the opera tor  Ri depends on the subgraph G~B. Suppose the subgraph G~n has 
two pairs as follows: 

Gias = (db')  where (d,  b', d, d )  E (a, b, c, d) (79) 
(e d')' 

then the opera tor  Ri can be chosen as following: 

Ri= (2k-1 1 2k2 2l-3 1 214 ..."" PA(d)N_7 N-6PA(b') N-5PA(d) PA(d'))N_4 " (80) 

Generally,  if G2n is a subgraph of  2n elements, and G~/-2~ is one of  the subgraphs  
of  the remaining N - 2n elements, then we have 

Oll(a2n , G/N-2n) = F(G2~). Da,(G~c_2n ) (i = 1 ,2 , . . .MN-2~) ,  (81) 

where 

= k c f  

Here  F(G2n) is a factor  which only depends on the subgraph G2n, and it can be 
obta ined f rom the recurrence relations shown above. & is an opera tor  to renumber  
the elements of  the subgraphs,  and Dll  (G~_2~) are the D11-values Of SN-2~. 
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